Linux Virtual Server for Scalable Network Services

Wensong Zhang
wensong@gnuchina.org

Ottawa Linux Symposium 2000
July 22th, 2000

Introduction

- Explosive growth of the Internet
- The requirements for servers
- Incremental scalability
- 24x7 availability
- Manageability
- Cost-effectiveness
- The single server solution
- The cluster of servers solution

Linux Virtual Server

Linux Virtual Server is a software tool that supports load balancing among multiple Internet servers that share their workload. It can be used to build scalable network services.

3-tier architecture of LVS

IP Load Balancing Techniques

- Virtual Server via NAT (Network Address Translation)
- Virtual Server via IP Tunneling
- Virtual Server via Direct Routing

Virtual Server via NAT
An example of virtual server via NAT

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Virtual IP Address</th>
<th>Port</th>
<th>Real IP Address</th>
<th>Port</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>192.168.1.101</td>
<td>80</td>
<td>172.16.0.5</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>TCP</td>
<td>203.0.106.5</td>
<td>80</td>
<td>172.16.0.5</td>
<td>8000</td>
<td>2</td>
</tr>
</tbody>
</table>

Packet rewriting flow:

The incoming packet for web service would have source and destination addresses as:

SOURCE: 202.100.1.23456 **DEST**: 202.103.106.5.80

The load balancer will choose a real server, e.g., 172.16.0.3.8000. The packet would be rewritten and forwarded to the server as:

SOURCE: 203.103.0.23456 **DEST**: 172.16.0.3.8000

Reply gets back to the load balancer as:

SOURCE: 172.16.0.3.8000 **DEST**: 202.100.1.23456

The packet would be written back to the virtual server address and returned to the client as:

SOURCE: 202.100.1.23456 **DEST**: 202.103.106.5.80

VS via IP Tunneling

VS-Tunneling Workflow

VS via Direct Routing

VS-DRouting Workflow
Advantages and Disadvantages

- Virtual Server via NAT
- Virtual Server via IP Tunneling
- Virtual Server via Direct Routing

Virtual Server via NAT

- Advantages:
 - Real servers can run any OS that supports TCP/IP.
 - Only one IP address is needed for the load balancer, which can use private IP addresses.
- Disadvantages:
 - The maximum number of server nodes is limited, because both request and response packets are rewritten by the load balancer. When the number of server nodes increases to 20, the load balancer will probably become a new bottleneck.

Virtual Server via IP Tunneling

- Advantages:
 - Real servers send response packets to clients directly, which can follow different network routes.
 - Real servers can be in different networks, LAN/WAN.
 - Greatly increasing the scalability of Virtual Server.
- Disadvantages:
 - Real servers must support IP tunneling protocol.

Virtual Server via Direct Routing

- Advantages:
 - Real servers send response packets to clients directly, which can follow different network routes.
 - No tunneling overhead.
- Disadvantages:
 - Servers must have non-ARP alias interfaces; or servers can be configured to redirect some packets to local port.
 - The load balancer and servers must have one of their interfaces in the same LAN segment.

The Comparison Table of VS-NAT, VS-Tunneling and VS-DRouting

<table>
<thead>
<tr>
<th></th>
<th>VS-NAT</th>
<th>VS-Tunneling</th>
<th>VS-DRouting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server OS</td>
<td>any</td>
<td>tunneling</td>
<td>non-arp device</td>
</tr>
<tr>
<td>Server network</td>
<td>private</td>
<td>LAN/WAN</td>
<td>LAN</td>
</tr>
<tr>
<td>Server number</td>
<td>low (10~20)</td>
<td>high (>100)</td>
<td>high (>100)</td>
</tr>
<tr>
<td>Server gateway</td>
<td>load balancer</td>
<td>own router</td>
<td>own router</td>
</tr>
</tbody>
</table>

Implementation Issues
Implemention Issues (cont')

- Each connection entry uses 128 bytes of effective memory.
- Connection hash table using clients' <protocol, address, port> as hash key.
- Slow timer to collect stale connection.
- ICMP handling.
- Three packet forwarding methods can be used together in a single load balancer.

Connection Affinity

Sometimes the connections from the same client must be assigned to the same server either for functional or for performance reasons, such as FTP, SSL, http cookies.

Use the persistent template to handle connection affinity.

- <cip, 0, vip, 0, sip, 0> for FTP
- <cip, 0, vip, vport, sip, sport> for persistent services except FTP.

Connection Scheduling

- Fine scheduling granularity:
 - Network connection

- The scheduling algorithms:
 - Round-Robin Scheduling
 - Weighted Round-Robin Scheduling
 - Least-Connection Scheduling
 - Weighted Least-Connection Scheduling

The LocalNode Feature

- In a virtual server of only a few nodes (23 or more), it is a resource waste if the load balancer is only used to direct packets.
- The LocalNode feature enable that the load balancer not only can redirect packets, but also can process some packets locally.

FWMARK-based services

- Use a firewall-mark to denote a virtual service instead of <protocol, address, port>.
- It can be flexibly used to build a virtual services associated to different IP addresses and port numbers.

LVS Cluster Management Software

- RedHat Cluster Server / Piranha
- LVS+Piranha Cluster Management tools.
- UltraMoney: Open-Source Server Farm
- LVS+lvs-gui+heartbeat+ldirectord
- heartbeat+ldirectord
- heartbeat+mon
- ...
Some sites using LVS

- UK National JANET Cache (wwwcache.ja.net)
- www.linux.com
- sourceforge.net
- One of largest PC manufacturers
- www.netwalk.com
- ...

Related Works

- The client-side approach
- The server-side Round-Robin DNS approach
- The server-side application-level scheduling approach
- EDDIE
- pWEB
- Reverse-proxy (Apache)
- SWEB

Related Works (cont')

- The server-side IP-level scheduling approach.
- Berkeley’s MagicRouter, Cisco’s LocalDirector, Alteon’s ACEDirector, F5 Big/IP
- IBM’s TCP router
- ONE-IP
- IBM’s NetDispatcher

Conclusion

- LVS has patched Linux kernel 2.0 and kernel 2.2 to support three IP load balancing techniques:
- VS-NAT, VS-Tunneling, VS-DRouting
- Four scheduling algorithms
- RR, WRR, LC, WLC
- High scalability (up to 100 nodes)
- High availability
- Supporting most of TCP and UDP services, no modification to either clients or servers.

Compared to Other Commercial Products

- Three IP load balancing technologies
- Multiple scheduling algorithms
- A robust and stable code base, a large user and developer base.
- Reliability proven in big real world applications
- Free to everyone

Future Work

- Making the LVS netfilter module for kernel 2.4 stable in the following month
- Implementing application-based (layer-7) load balancing inside the kernel.
- More load-balancing algorithms or load-sharing algorithms
- Exploring higher degrees of high availability (or even fault-tolerance)
Acknowledgements

Thanks to Julian Anastasov, Joseph Mack, Peter Kese, Horns, Lars Marowsky-Bree, Roberto Nibali and others.

Thanks to Red Hat, OLS.

http://www.LinuxVirtualServer.org/